Studies on Hydrodynamic Propulsion of a Biomimetic Tuna

نویسنده

  • Afzal Suleman
چکیده

Current unmanned undersea vehicles (UUVs) are almost exclusively propeller driven designs, which must inherently be optimized for a particular speed, sacrificing low speed manoeuvrability for cruising efficiency. Recently, biomimetic approaches to underwater vehicle propulsion have illuminated the exciting possibilities for performance improvements made possible by emulating fish motion. In particular, a number of test vehicles indicate that the carangiform swimming mode employed by highly developed species of fish, such as the Bluefin tuna, offers both a more efficient propulsion mechanism than propellers, in addition to the ability to perform quick manoeuvring. This book chapter presents studies on the propulsion efficiency of a biomimetic tuna at the University of Victoria. Two prototypes have been designed and implemented experimentally. The first prototype consists of a biomimetic tuna that employs shape memory alloy wires to affect shape induced propulsion. The second prototype propulsion model consists of four joints that are rotated using servomotors. Issues related to the mechanism, systems and energy are discussed. The performance and the lessons learned related to the two design philosophies are presented and discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

توسعه یک مدل سه بعدی روبات ماهی و مقایسه آزمایشگاهی نتایج

Biomimetic underwater vehicle design has attracted the attention of researchers for various reasons such as ocean investigation, marine environmental protection, exploring fish behaviors and detecting the leakage of oil pipe lines. Fish and other aquatic animals have good maneuverability and trajectory following capability. They also efficiently stabilize themselves in currents and surges leave...

متن کامل

Design and Implementation of a Biomimetic Turtle Hydrofoil for an Autonomous Underwater Vehicle

This paper presents the design and implementation of a turtle hydrofoil for an Autonomous Underwater Vehicle (AUV). The final design of the AUV must have navigation performance like a turtle, which has also been the biomimetic inspiration for the design of the hydrofoil and propulsion system. The hydrofoil design is based on a National Advisory Committee for Aeronautics (NACA) 0014 hydrodynamic...

متن کامل

Numerical simulation of flow hydrodynamic around dolphin body in viscous fluid

The biomimetic and hydrodynamic study of aquatic animals is one of the most challenging computational fluid dynamics topics in recent studies due to the complexity of body geometry and the type of flow field. The movement of the aquatic body, and particularly the tail section and the corresponding movement of fluid around the body, causes an unsteady flow and requires a comprehensive study of t...

متن کامل

Design Methodology for Biomimetic Propulsion of Miniature Swimming Robots

Miniature and energy efficient propulsion systems hold the key to maturing the technology of swimming microrobots. In this paper, two new methods of propulsion inspired by the motility mechanism of prokaryotic and eukaryotic microorganisms are proposed. Hydrodynamic models for each of the two methods are developed and the optimized design paramteres for each of the two propulsion modes are demo...

متن کامل

Effects of Tail Geometries on the Performance and Wake Pattern in Flapping Propulsion

Swimming fishes exhibit remarkable diversities of the caudal fin geometries. In this work, a computational study is conducted to investigate the effects of the caudal fin shape on the hydrodynamic performance and wake patterns in flapping propulsion. We construct the propulsor models in different shapes by digitizing the real caudal fins of fish across a wide range of species spanning homocerca...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012